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If different contaminant species are subject to different transverse drift rates (e.g. 
gravitational settling), then there is a tendency for the species to separate out. The 
efficiency of this separation depends upon the relative shapes of the longitudinal 
concentration distributions. Jayaraj & Subramanian (1978) have drawn attention to 
the disparity between their computed skew concentration distributions and the 
symmetric Gaussian distributions predicted by one-dimensional diffusion models. 
Here i t  is shown that a one-dimensional delay-diffusion model yields suitably skew 
predictions. The model equation is used to investigate the ext,ent to  which the 
separation of different contaminant species can be improved by pretreating the 
sample (i.e. allowing differential drift) in a stationary fluid before being eluted into 
the shear flow. Pretreatment is found to be very effective for plane Poiseuille flow 
but not for the thermogravitational columns. 

1. Introduction 
I n  a laminar or turbulent shear flow the advection velocity for a cloud of 

contaminant depends upon the concentration profile across the flow. If different 
contaminant species have different equilibrium profiles, then they will eventually 
travel a t  different velocities. Field-flow fractionation is a class of processes which 
exploit this effect to separate the constituents of a mixture (Kirkwood & Brown 1952 ; 
Taggart 1953 ; Lightfoot, Chiang & Noble 1981). A force field (electrical, magnetic, 
thermal, centrifugal or gravitational) is used to induce a species-dependent drift 
velocity across the flow, and thereby controls the equilibrium profiles. 

The efficiency of the separation can be severely reduced by the longitudinal 
spreading of the individual constituents. Giddings (1968) showed that at sufficiently 
large times after discharge the longitudinal dispersion process can be described by 
a one-dimensional constant-coefficient diffusion equation. Thus the linear rate of 
separation eventually dominates the square-root rate of spreading. 

I n  practice the time needed for the diffusion equation to become applicable can 
be prohibitively large. Also, for extraction processes it is desirable to avoid excessive 
dilution, and therefore deliberately to restrict the amount of time available for 
longitudinal spreading. This led Krishnamurthy & Subramanian ( 1977) to investigate 
the transient stages by means of a one-dimensional variable-coefficient diffusion 
equation, with the longitudinal-dispersion coefficient changing with time. 

For a point discharge the longitudinal concentration distribution predicted by the 
variable-coefficient diffusion equation is Gaussian and exactly symmetric. Alas, 
Jayaraj & Subramanian (1978) showed computationally that, for the particular case 
of laminar flow in a parallel-plate channel, the longitudinal concentration distributions 
are markedly skew, with concentration peaks significantly displaced from the 
Gaussian predictions. Depending upon the relative shifts of the concentration peaks, 
this can have a major influence upon the efficiency of separation. 
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Recently, the author (Smith 1981) has shown that for laminar or turbulent flows 
when there is no transverse drift the skewness of the longitudinal concentration 
distribution can be reproduced exactly by a one-dimensional delay-diffusion equation. 
The purpose of the present paper is to show how transverse drift can be allowed for 
in the delay-diffusion model. As we might hope, the new predicted longitudinal 
concentration distributions are in good agreement with the results of Jayaraj & 
Subramanian (1978). 

It is the perturbation of the concentration profile from equilibrium which gives rise 
to the shear dispersion (Giddings 1968). I n  the one-dimensional diffusion approach, 
this perturbation is related to the local longitudinal concentration gradient (Krishna- 
murthy & Subramanian 1977). The actual response of the cross-stream concentration 
profile is not instantaneous, The delay-diffusion approach allows for the fading 
influence of the longitudinal concentration gradient further upstream a t  earlier times. 
The skewness is towards the front or rear according to whether the memory velocity 
is faster or slower than the centroid velocity (Smith 1981). 

One advantage of using a model equation, rather than the full equations, is that 
it is comparatively easy to  investigate a range of conditions. I n  particular, $8 of this 
paper tests the effectiveness of pretreating a sample by application of the transverse 
field in a stationary fluid prior to elution. The idea is that  the concentration profile 
for each constituent is already equilibrated, thereby maximizing the initial velocity 
difference. For plane Poiseuille flow this technique is found to provide significantly 
improved separation of the different constituents. However, for a free-convection flow 
(thermogravitational column), there is only a slight improvement in separation. 

2. Longitudinal-dispersion equation 

equation for the contaminant concentration c(x ,  y, t )  takes the form 
If there isa drift velocity v across the primary flow u(y), then the advection-diffusion 

with 

Here K ( Y )  is the diffusivity, q(s, y, t )  the source strength, and y-, y+ the positions of 
the impermeable boundaries. I n  a turbulent fluid i t  is necessary that the contaminant 
be very dilute (so that the drift of contaminant does not modify the turbulence), and 
that v be small (so that a contaminant particle stays within an eddy long enough that 
the effects of the turbulence can be modelled by means of the eddy diffusivity). 

The equilibrium profile of concentration across the flow is given by 

(2 .2a,  b )  

where the reference level yo is chosen so that the cross-sectional average value 7 = 1 
is correctly reproduced. To study the way in which the concentration approaches this 
equilibrium profile, we make the decomposition 

where the correction terms c’, q’ have zero cross-sectional average values. 
For mathematical simplicity we shall first analyse the pretreated case in which the 
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initial discharge exactly conforms to the equilibrium profile (i.e. q‘ = 0). Following 
Smith (1981, equation ( I  5))  we pose the series representation 

Thus the concentration variations across the flow induced by the velocity shear 
depend upon the upstream conditions a t  previous times, with weight functions lj(y, 7 )  

and displacement velocity ii(7). Substituting this representation into equation (2.1 a )  
and then taking the cross-sectional average value, we obtain an exact evolution 
equation for F :  

a,c+pia ,c -KYaiF+ 1 ui??+lC x- C(7’)d7‘,t-7 d7 
j=l T T  0 ( l 

- g J o c o ~ X  j-1 ( 6 1 KZ.$+’C x- C(7’)d7’,t-7 d7 = q. (2.5) 

Neglecting a: c and higher derivatives yields the delay-diffusion equation 

with 

(2.7a, b, c) uoo = pi, K~~ = KY, aT D = -q. 
Lure & Maron (1979) derived a similar delay-diffusion equation, but with an 
additional a,C memory integral and without the displacement velocity C(7)  (i.e. a 
more complicated equation which does not reproduce the exact skewness). 

- 

3. Memory functions 
The formally exact equation (2.5) permits us to replace time derivatives in favour 

of x-derivatives. Thus, as shown in detail by Smith (1981, equation (2.4)), we can 
extract from the field equation (2.1 a )  the equations satisfied by the weight functions 
&J, 7) (i.e. the coefficients of 8, F )  : 

a,zl+ay~vi1)-a,~h-ay~,~ = 0, (3.1 a )  

with 

with 
(3.2b) 

( 3 . 2 ~ )  

The drift term in ( 3 . 1 ~ )  can be removed by means of the change of variables 

&(Y> 7 )  = YQY, 7 ) .  (3.3) 

The resulting equations for L can be written 

a, L+  b, v +;I L -  a& ay L )  = 0, (3 .4a)  

13.9 
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with 

To solve (3.4a-c) we introduce the eigenfunctions +.,(y): 

with 

(3 .46)  

(3 .4c)  

(3 .5a)  

(3 .5c ,d)  

where a,, is the Kronecker delta. For the initial conditions ( 3 . 4 ~ )  at 7 = 0, we are 
led to define the velocity coefficients 

00 

Thus the solution of (3 .4a-c)  is given by the series 
m 

L = - u m o + m ( ~ ) e x ~  ( - A m 7 ) .  
m-1 

(3 .6a ,  b )  

(3 .7)  

We recall that the memory function a, D in the delay-diffusion equation (2.6) is 

- - 
given by 

a, D = - ul, = - y h ~ L .  (3 .8)  

Substituting for yiu and L in terms of their respective eigenfunction expansions (3.6 b, 
3 .7) ,  we arrive a t  the neat expression 

This shows that the memory function is strictly positive and decays exponentially 
on a timescale of l / A l .  

4. Memory displacement velocity 
Formally (3.9) is identical with the corresponding result of Smith (1981, equation 

(3.4)). Indeed, what has been achieved through the introduction of the eigenmodes 
(3.5) is the elimination of any explicit occurrence of the transverse drift velocity. Thus, 
we can straightforwardly adapt any of the results of Smith (1981). _ _  In  particular, the 
truncated equation (2.6) is at its most accuratie if the coefficient {uZ2-~Z1) of in 
(2.5) is zero. Field-flow fractionation is viable only when advection effects dominate 
diffusion, i.e. when the diffusivity K is relatively small. I n  this high-P&clet-number 
limit, or when K is constant, the vanishing of the C coefficient is achieved if we select 
the memory velocity 647) : 

m 

Iii(7’) - uoo) d7” = 7 Z (umm - uoo) exp ( -Am 7 )  
m-1 

exp ( - A n  7 )  -exp ( - A m  7 )  

A m -  An 

co 

+ C. I: umnumouno 
m=i n + m  

(Smith 1981, equation ( 4 . 6 ) ) .  
As noted by Smith (1981, § 4 ) ,  if (2 .5)  is multiplied by xn and integrated from - m 

to + 00, then only terms up to 8; C contribute to the evolution of the nth moment 
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dn), Thus, if the coefficient of 3; cis negligible, then the t'runcated equation (2.6) yields 
exact results for d3)  as well as for the lower moments do),  dl), @). Hence wi,th the 
optimum selection (4.1) for the memory displacement velocity, the area, centroid, 
variance and skewness are all exactly reproduced by the delay-diffusion equation 
(2.6). 

The connection between the displacement velocity and the skewness can be seen 
in the formula 

Pt  r7 

a d3)  = 6d0)  a, D [G(r') - u,,] dr' dr  (4.2) 
t Jb Ji 

(Smith 1981, equation (4.9)). Thus, when the memory velocity G exceeds the centroid 
velocity uoo, there is a tendency to develop positive skewness (i.e. a forwards tail). 
The weight factor a, D gives greatest importance to the value of G - uoo at times less 
than the memory scale l / A l .  

The physical origin of the skewness lies in the velocity profile across the flow (see 
the pure convection solution in figure 3 of Jayaraj & Subramanian 1978). In  
particular, from (4.1) and the definitions (3.6a, b ) ,  we can derive the result 

The cubic emphasizes extremes of the difference between the local and the weighted- 
mean velocities. Thus large uoo can be associated with negative skewness, and small 
uoo with positive skewness (contrast figures 4 and 14 of Jayaraj & Subramanian. 
1978). 

5. General discharges 
For simplicity the above derivation of the delay-diffusion equation (2.6) was based 

on the assumption that the source distribution q(x, y, t )  conformed exactly to the 
equilibrium profile y ( y )  across the flow. The most usual situation, of a uniform 
discharge, does not satisfy this assumption. Follwing Smith (1982), the necessary 
generalization is to represent q(x, y, t )  as 

00 

q = 4(x, t )  Y ( Y )  + Y' q m ( x ,  t )  $ m ( Y ) ,  
m-1 

and to include additional source-memory terms in the series (2.4) : 

This leads to further right-hand-side terms in the exact evolution equation (2 .5)  for 
c:  

A minimal description of the effects of the cross-stream discharge profile is to retain 
just the azqm terms. When this is optimized by the section of Gm (i.e. the absence 
of a a i q ,  term), we arrive a t  the delay-diffusion equation 

a , ~ + u o o ~ Z ~ - K o o a ~ c -  
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FIGURE 1. The velocity and equilibrium concentration profiles for plane Poiseuille flow. 

(Smith 1982, equation (5.2)). The optimization ensures that (5.4) gives the exact area, 
centroid and variance for arbitrary discharge profiles. 

The variable coefficient diffusion equation 

a, C- Kl(t) a, e- K2(t) a; c = o (5.5) 

derived by Krishnamurthy & Subramarian (1978) also has the virtue of yielding exact 
results for the area, centroid and variance. In  the present notation the K,, K, 
coefficients for a sudden discharge a t  t = 0 are 

m 

K2(t) = ~oo+D(t)+ C q m U m o ( U m m - U o o ) t e ~ P ( - h m t )  
m=1 

qmumo{1-exp(-iim7))] [ S qmum0exp(--m7) 1 . (5.7) 

Thus, unless the qm terms are absent, the coefficients are more difficult to calculate 
than the corresponding coefficients in the delay-diffusion equation (4.4). A more 
serious shortcoming of the diffusion model is that i t  is inapplicable to repeated or 
multiple (nonidentical) discharges (Smith 1981, 1982). 

00 -k17 m-1 

6. Plane Poiseuille flow 
For steady laminar flow between parallel plates a distance h apart, the horizontal 

velocity profile is parabolic : 

u ( y )  = 6a[”-(32]  h h  (0 < y < h) .  

If the transverse drift velocity v and the diffusivity K are both constant, then the 
equilibrium profile of concentration across the flow is exponential (see figure 1) 

where 

P = vh/2~.  (6.3) 
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Transverse drift P = 3 vhlK -) 

5 10 

FIGURE 2. The asymptotic longitudinal centroid velocity uoo as a function 
of the transverse drift velocity for plane Poiseuille flow. 

The weighted average advection velocity uoo is given by 

3 ~ [ P c o t h  P- 11 
P2 uoo = (6.4) 

(Krishnamurthy & Subramanian 1977, equation (A 18)). For small transverse drift 
the reduction in concentration near one boundary is compensated by an increase in 
concentration a t  the other boundary. Thus, the reduction in the advection velocity 
is quadratic in P. In the opposite limit of large transverse drift, the equilibrium 
concentration profile (6.2) only penetrates a distance of order h/P away from the 
boundary. This leads to the advection velocity decreasing as a / P  (see figure 2 and 
Krishnamurthy & Subramanian 1977, figure 3). We remark that to achieve efficient 
separation of different species i t  would be desirable to  adjust the force field so that 
the transverse PBclet numbers <. for the constituents lie in the range 2-10. 

The eigenfunctions +,(y) are displaced sinusoids : 

with 
K 

A, = [m27t2 + PZ] -. 
h2 

The dependence of the decay rates upon the drift velocity v (i.e. upon P )  shows that 
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Time K t l h ' h  

FIGURE 3. The decay o f  the memory function a, D for different values of 
the transverse P6clet number in plane Poiseuille flow. 

the transverse bodily moment of the entire contaminant profile accelerates the free 
(%-independent) decay towards the equilibrium profile. 

Multiplying together u, ya, ~, and then taking the cross-sectional average value, 
we arrive a t  the result 

(m even), ( 6 . 7 ~ )  
m2n2 + p2 cash +P- i 4 mn 

Umo = --u122/2 

4P 'Osh "1 (m odd) 
m2z2 + P2 (6.7 b )  

(Gradshteyn & Ryzhik 1980, $2.667). The general expression (3.9) now permits US 

to evaluate the delay-diffusion function a, D (see figure 3).  For P = 0 only the even 
coefficients are non-zero. Thus for small values of the transverse drift, the symmetry 
breaking leads to an increased and greatly prolonged memory, primarily associated 
with the leading odd coefficient ul0. The centre of the flow and the boundary are 
regions in which the shear-dispersion process is least efficient. For small P there is 
less material near the centre (see figure l ) ,  so the delay-dispersion function is 
increased. However, for large P the contaminant becomes so tightly confined to  the 
boundary that a, D is reduced. 

The higher-order velocity coefficients u,, are given by 

( 6 . 8 ~ )  
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Time tK/h2 -* 0.025 
I 

FIGIJRE 4. The memory displacement velocity C ( T )  - uoo for plane Poiseuille flow, showing the change 
from small negative t o  large positive displacements (skewness) when the transverse drift parameter 
P is increased. 

- 24Gmn(m27c2 + n2n2 + 2 P )  
x2(m2 - n2)2 [ r n 2 ~ 2  + P214  [n2+ + (rn + n even). (6 .8~)  

Figure 4 shows the time dependence of the memory displacement velocity G(7)-uoO 
which results from using these expressions for urn, in (4.1). For weak transverse drift 
there is a reduction in the magnitude of the velocity difference G-u,,,. However, for 
larger P, the velocity difference becomes quite marked, but of reversed sign. 

The implied changeover from negative to positive skewness is in qualitative 
agreement with the numerical results of Jayaraj & Subramanian (1978, figures 4, 13). 
Positive skewness implies that  the concentration peak will be displaced to the left 
of the centroid. Thus, for a mixture of two contaminants, not only will the 
contaminant with the larger value of P have a slower centroid velocity uoo, but also 
there will be an additional displacement to  the left for the concentration peak. Hence 
the true separation of constituents in plane Poiseuille flow is more efficient than 
would be predicted in a diffusion approximation (Krishnamurthy & Subramanian 
1977). 

u m n  = 

For a uniform discharge q(x,  t ) ,  the eigencoefficients qm are given by 

s inhip (m even), Qm 

sinhP 4 - 'm = 2./2r7} eosh&P (rn odd). 
Q 

( 6 . 9 ~ )  

(6.9b) 

Figure 5 shows how the centroid velocity 

oc 

(6.10) 

decreases to uoo as the contaminant profile across the Aow relaxes towards its 
asymptotic state (Krishnamurthy & Subramanian 1977, equation (A 17) and figure 

Qm uoo+ Z TUmOexp(-hmt) 
m=1 9 
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I, P = O  

10 

.- 
0. I 

I 
Time I K l h  

FIGURE 5. The centroid velocity as a function of time for an initially 
uniform discharge in plane Poiseuille flow. 

2). A noteworthy feature is that near t = 0 the centroid velocity only departs very 
gradually from the bulk velocity a. The reason for this is the symmetry of the velocity 
profile. For small times the reduced concentration in one half of the flow is 
counterbalanced by the increased concentration in the other half of the flow. 

For a mixture of two constituents with transverse Pkclet numbers e, pZ the 
separation of the centroids is proportional to the area between the respective curves 
in figure 5 .  Thus the separation is dismayingly inefficient until times of order 0 . 0 5 h 2 / ~ .  
Jayaraj & Subramanian (1978, figures 3, 12) give the concentration distributions for 
P = 0 ,5  at the very early time 0.025h2/~ .  In  keeping with the above discussion, the 
separation is barely perceptible. It deserves comment that a t  such early times the 
shear-dispersion process is decidedly two-dimensional (Jayaraj & Subramanian 1978, 
figures 2 and 7) ,  and the concentration profiles across the flow are too far away from 
the equilibrium for the one-dimensional diffusion or delay-diffusion models to be 
meaningful (Smith 1982, figure 2). 

Although the above figures 1-5 do illuminate the effects of transverse drift upon 
contaminant dispersion, they do not provide a test of the accuracy of the delay -diffusion 
equation. To do this, (5.4) was solved numerically for the particular case 

= 0.001, p = 100 for 1%. < 0.005. (6.11) 
h2 K 

K ha 
P = 5 ,  t =0.5-- ,  - 

Figures 9, 10 of Jayaraj & Subramanian (1978) show that a t  this relatively large time 
the transverse concentration profile is close to equilibrium. Thus reasonable results 
can be expected of a one-dimensional model. Figure 6 confirms that this is indeed 
the case. Reassuringly, the delay-diffusion equation is much more accurate than the 
diffusion equation, with the concentration peak significantly reduced and shifted to 
the left. 
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FICURE 6. Exact (-), delay-diffusion (+ + +)  and diffusion ( -  - - )  concentration profiles 
for plane Poiseuille flow with transverse drift. 

7. Thermogravitational columns 

the velocity field 
A temperature difference between the two walls of a vertical channel gives rise to 

u = 16U[-i+3(i)2--3(~)3] (0 < y < h )  

(see figure 7 and Lightfoot et al. 1981, figure 3 c ) ,  where U is the mean velocity in 
the upwards-going half of the flow. Conveniently, the equilibrium concentration 
profile y (y )  and the eigenfunctions ~ m ( y )  are precisely the same as for plane Poiseuille 
flow ((6.2), (6.5)). 

The weighted average advection velocity is given by 

with 
uo0 = 8U{P2+3-3Ycoth P}/P3, 

P = v h / 2 ~  

(see figure 8). The updown symmetry of the flow permits us to restrict our attention 
to positive values of the transverse PBclet number P. For small P there is more 
contaminant in the upwards-going half of the flow, and there is a marked increase 
in uoo. However, for large transverse drift the contaminant is so closely confined to 
the wall that  uoo eventually decreases as U / P .  The maximum advection velocity (of 
0.8SU) is attained a t  P = 3.5. Thus, for efficient separation of different constituents 
it is desirable to keep the transverse force field sufficiently weak that the transverse 
PBclet numbers Pi are all in the range -3 .5  to +3 .5  (i.e. to avoid the possibility of 
two contaminant species with different P? having the same equilibrium velocity uoo). 
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Hot 

Cold 

FIGURE 7 .  The velocity and equilibrium concentration profiles 
for a thermogravitational column. 

Transverse drift P 
FIGURE 8. The asymptotic centroid velocity uoo as a function of the transverse 

drift velocity for a thermogravitational column. 
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FIGURE 9. The decay of the memory function 3, D for different values 
transverse PBclet number in a thermogravitational column. 

of the 

Performing the integral uyi$, (Gradshteyn & Ryzhik 1980, §2.667), we obtain the 
coefficients 

(m even), ( 7 . 4 4  

- 12P sinhip] (m odd). (7.4b) 
m2x2 + p2 

Figure 9 shows the delay-dispersion function a, D which results from using these 
coefficients in the summation (3.9). The much greater shear in the free-convection 
velocity profile (figure 7 )  as compared with plane Poiseuille flow (figure 1) gives rise 
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FIGURE 10. The memory displacement velocity Z(T)  -uoo for a thermogravitational column, 
showing the change first to negative and then to positive values as P is increased. 

to greatly increased shear dispersion. For example, when P = 0 we have the 
respective results 

32 U2h2 
a,D(O) = #uz, D(C0) = -__ 

315 K ' 

1 2 h 2  
a,D(O) = $2, D(00) = --. 210 K 

(7.5a) 

(7.5b) 

For large P the equilibrium concentration profile (6.2) is confined to the linear shear 
region close to the wall. The ratio 8U/3t i  of the respective velocity shears gives rise 
to the ratio (8U/3t i )2  = 7.1 1 ( U/t i ) z  between the shear-dispersion rates. 

The higher-order velocity coefficients urn, are given by 

48PU 
m2n2[m2n2 + PI ' 

- 
Umrn = ( 7 . 6 ~ )  

(7.6b) 

64 Umn(m2n2 + n2nz + 2 P )  
n2((m2 - nz)2 [m2n2 + PI+ [nznz + PI+ urn, = 

768Unm[n2(m4 + 6m2n2 + n4) + 4 P ( m 2  + n2)] 
n2(m2-n2)4 [m2n2+P2]+[nznz+P2]f 

- ( m + n  odd). ( 7 . 6 ~ )  

Figure 10 shows the time dependence of the memory displacement velocity G ( 7 )  -uoo, 
as given by (4.1). For P = 0 the updown symmetry of the flow ensures that 
G = uoo = 0. As P increases, the smaller amount of contaminant in the downwards- 
flowing half of the channel gives rise to a trailing tail for the contaminant distribution, 
and hence to negative values of the skewness and of G(7)-uoO. However, for 
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I 
Time t~/hl---------j 0.2 

FIGURE 1 1 .  The centroid velocity as a function of time for an initially uniform 
discharge in a thermogravitational column. 

sufficiently large P the contaminant is confined so closely to  the wall, that the 
faster-moving fluid slightly further away from the wall gives rise to a forwards tail, 
positive skewness, and positive values of C ( T ) - U ~ ~ .  It is only a t  large times that the 
opposing effect of the more distant downwards-going half of the flow tends to 
counteract this positive skewness, and to  make G(T) -uoo eventually become negative 
(see (4.2)). 

For a uniform discharge the coefficients qm are the same as for plane Poiseuille flow 
(6.9). Figure 11 shows the time dependence of the centroid-velocity equation (6.10). 
As the concentration profile drifts across the flow into the upwards-going fluid, there 
is an increased centroid velocity. However, for sufficiently large P there is a 
subsequent decrease in the centroid velocity as the contaminant profile becomes 
confined to the slow-moving fluid near the wall. 

For a mixture of constituents with different transverse PBclet numbers, the 
crossing-over of the centroid velocity curves implies a delayed separation of the 
constituents. This feature can be avoided if, as recommended above, the range of 
PBclet numbers is restricted to the range - 3.5 to + 3.5. With this restriction, i t  takes 
a time of order 0 . 2 h 2 / ~  for the separation to become fully efficient. 

8. Pretreatment 
The difference between the centroid velocities for the various species is a maximum 

for the equilibrium relaxed distribution, and nil for the uniform initial conditions (see 
figures 5 ,  11 above). Thus better separation can be achieved if a sample is pretreated 
by application of the transverse field for a sufficient length of time in a stationary 
fluid and subsequently eluted. The separation of the constituents is not dependent 
only upon the centroid velocity. It also depends upon the longitudinal spreading and 
the skewness of the longitudinal concentration distribution. Hence, to assess the 
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Distance xulish’ 

P = 8  

0 0.1 0.2 
Distance xKjPh2 

FIGCRE 12. Contaminant distributions for (a )  uniform discharges, and ( b )  pretreated 
(equilibrium) discharges in plane Poiseuille flow. 

worthwhileness of pretreatment i t  is desirable to compute the concentration distrib- 
utions for a range of transverse PBclet numbers, with and without pretreatment. 

At large times the initial conditions become unimportant. Yet at small times the 
separation process is dominated by the longitudinal spreading. Thus it is a t  
intermediate times, of order l / A l ,  that  the effects of pretreatment will be most 
noticeable. This is precisely the time range for which the delay-diffusion equation (5.4) 
is both accurate and a significant improvement over the variable-coefficient diffusion 
equation (5 .5)  (see figure 6). Hence to assess the pretreatment technique we 
confidently make use of the model equation (5.4). 

For plane Poiseuille flow we find that pretreatment is quite effective. Figures 
12 (a,  b)  show the concentration distributions for uniform and for equilibrium 
discharges a t  the time t = 0.1h2/K-. The improved separation owes as much to the 
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6 
Distance xK/uh’ 

0.5 

(equilibrium) 

reduced net longitudinal spreading as to the increased centroid displacement. 
Another contributory factor is that  the skewness increases with P and shifts the 
concentration peaks further to  the left. 

Alas, for thermogravitational columns the pretreatment technique turns out to be 
of little use. Figures 13(a, b )  show the concentration distributions for uniform and 
for equilibrium discharges a t  the time t = 0 . 4 h 2 / ~ .  The effect of the increasingly 
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negative skewness almost exactly annuls the centroid shift, and the position of the 
concentration peak is almost the same whether P = 1,  2 or if there is pretreatment 
or not. All that is affected is the height of the concentration peak. 

From these two examples we infer that, for pretreatment to be useful, the skewness 
should augment the centroid displacement, thereby making the separation process 
quite rapid. When these two effects are in opposition the influence of the discharge 
conditions (uniform or pretreated) will have become insignificant by the time that 
separation has taken place. 

I wish to thank a referee for drawing my attention to the pretreatment technique, 
and to the implications derivable from the above analysis. The financial support of 
British Petroleum and the Royal Society is gratefully acknowledged. 

R E F E R E N C E S  

GIDDINGS, ?J. C. 1968 Nonequilibrium theory of field-flow fractionation. J .  Chem. Phys. 49,81-85. 
GRADSHTEYN, I. S. & RHYZHIK, I. M. 1965 Tables of Integrals, Series and Products. Academic. 
?JAYARAJ, K. & SUBRAMANIAN, R.  S. 1978 On relaxation phenomena in field-flow fractionation. 

KIRKWOOD, J. G. & BROWN, R. A.  1952 Diffusion-convection. A new method for the fractionation 

KRISHNAMURTHY, S. & SUBRAMANIAN, R. S. 1977 Exact analysis of field-flow fractionation. Sep. 

LIGHTFOOT, E. N., CHIANG, A. S. & NOBLE, P. T. 1981 Field-flow fractionation (polarisation 

LURE, M. V. & MARON, V. I. 1979 Solid particle impurity propagation in a fluid flow in a pipe. 

SMITH, R. 1981 A delay-diffusion description for contaminant dispersion. J .  Fluid Mech. 105, 

SMITH, R. 1982 Non-uniform discharges of contaminants in shear flows. J. Fluid Mech. 120,71-89. 
TAGGART, A.  F. 1953 Handbook of Mineral Dressing. Wiley. 

Sep. Sci. 13, 791-817. 

of macromolecules. J. Am. Chem. SOC. 74, 1056-1058. 

sci. 12, 347-379. 

chromatography). Ann. Rev. Fluid Mech. 13, 351-378. 

J .  Engng Phys. 36, 562-567. 

469-486. 


